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EXECUTIVE SUMMARY

A periodic process can be characterized in terms of three periodicity (or p-)
attributes: the periodicity (or period-length), the periodic wave-shape or pattern and the
wave-magnitude or the scaling factor; all three attributes can be time varying in a real-
life situation.

In this report, we hypothesize that an analysis of the dynamics underlying a
nearly periodic physiological process, such as appearing in a rhythmic blood wave
pattern, can be quantified in terms of the dynamics of its periodicity attributes. This
report analyzes data obtained from archival studies in which the photo-plethysmograph
signal (PPS) is recorded from the finger. Each specific blood wave signal is
decomposed into a regular component, which is nearly periodic, and an irregular
residual process. The dynamics of the PPS p-attributes of the regular part are analyzed
individually as well as collectively to assess the general cardiovascular state.

A new class of surrogate series based on the shuffling of the p-attributes is
proposed to detect the nonlinear determinism in the PPS. The dynamics is further
studied by mapping the variations of the p-attributes in a novel p-space, defined by the
three orthogonal periodicity-attribute components; each point in the p-space represents
one nearly periodic segment. Novel complexity measures based on global and temporal
variations of dynamics in the p-space are proposed. A correlation is explored between
the complexity measures derived from the p-space mapping of PPS that closely
matches the cardiovascular state of a typical human subject.

The mathematical algorithms derived from a simple blood flow wave pattern can
be easily applied for assessing other physiologic signals in the cardiovascular system
obtained during perturbations caused by dynamic exercise, thermal stress, and
potentially high terrestrial physiologic effects during hypobaric stress.




INTRODUCTION

Any periodic or nearly periodic signal can be characterized by three specific
periodicity attributes or ‘p-attributes’: the periodicity or period length, the repetitive wave-
shape or pattern, and the multiplicative scaling factor associated with the successive
periodic segments [7-9]. In case of dynamic, transitory physiologic signals, such as the
blood pressure waveforms obtained from a finger plethysmograph, all three periodicity
attributes may vary with time. In this report, several methods are proposed to analyze
real-time dynamics of these three attributes of the signal both individually as well as
collectively and to explore their relationship with the underlying cardiovascular state
through a pilot study.

Multiple research studies on Heart Rate Variability (HRV) show that a healthy heart
exhibits complex deterministic dynamics, whereas cardiac pathologies reflect in
decreased complexity of the HRV signal: i.e. decreased cardiac chaos [1,4,12-14].
Conventional Fourier decomposition based analysis [1,4] assumes the signal being
generated is from a linear process. Spectral analysis of HRV series reveals an inverse
relationship between the spectral power and the frequency; such inverse or 1/f
spectrum of HRV indicates its fractal or nonlinear nature [12]. Therefore, for the in-depth
understanding of the cardiovascular process, nonlinear methods are routinely used
[4,13,15], which is also the approach followed in the present work.

In HRV studies, only the variation in the ‘periodicity’ of ECG signal can be faithfully
analysed. The present work attempts to study the cardiovascular dynamics through the
analysis of the photo-plethysmographic signal obtained from a database that includes
direct recordings from the finger (or digit). Many studies show that the digital blood
volume pulsates in step with the human cardiac cycle, which is conveniently detected by
the photo-plethysmograph [6,10,18]. The shape of the sensed pulsatile signal is similar
to that of the intra-arterial blood pressure signal. Thus the HRV information is implicit
with the photo-plethysmograph signal (henceforth called PPS); in addition, the wave-
shape or pattern as well as the scaling or the magnitudes of the nearly repetitive
segments of the signal are expected to reveal additional information on the
cardiovascular dynamics. The proposed analysis in this report is a mathematical generic
construct, obtained from data mining of multiple experimental studies [10] where
information contained in all three periodicity attributes of an oscillatory time series is
analyzed to assess the state of the underlying dynamics.

Hypothesis tested: Because the plethysmograph signal generally exhibits a certain
degree of irregularity, there are two basic issues: (a) whether the irregularity in the
signal is due to random variations in the underlying process or whether it is due to
nonlinear determinism, and (b) in the latter case a particular focus is how the individual
periodicity attributes influence the nonlinear determinism in the data. Conventionally,
surrogate data analysis is used for the assessment of nonlinearity [17, 20]. Since there
are certain caveats in the analysis of time series with strong periodic components
through conventional surrogates [19,21], generation of a new class of mathematical
surrogates is proposed, where the temporal order of the periodicity attributes are




randomized. These surrogate series retain the similar noisy limit cycle structure in the
phase-space as the original series. The degree of determinism in the data is detected in
the light of the generated surrogates, and the effect of the variations of individual
attributes on the overall process is considered.

METHODS

To obtain a quantitative analysis of the dynamics associated with the collective
variations of the three-periodicity attributes, a generic three-dimensional mapping
scheme was designed where the coordinates were defined in terms of the individual
periodicity attributes. Each periodic segment maps to one point in the proposed p-
space. New complexity measures are proposed based on the static (or spatial) and the
dynamic (or temporal) features of the formation of the cloud of points mapped from the
signal. It is shown that the qualitative assessment of the underlying dynamics of the
cardiovascular process is possible through the characterization of the mapping of the
PPS series in the p-space.

Data recording used: In the original archival data set [10], a transmittance type
photo-plethysmograph was used, where two series connected IR-LEDs operating at
3KHz are used as the source of light, and two phototransistors connected in parallel are
used as the detectors. The optical components are fitted inside a finger-encircling cuff.
The digital blood-volume pulsations, detected by the Ehoto-transistors is passed through
a 50 Hz notch filter followed by an amplifier and a 4" order Butterworth filter with a cut-
off at 40 Hz. The analogue output is digitised with 12-bit ADC. The data were recorded
with a sampling frequency of 122 Hz. Segments of data free from motion artefacts are
used for analysis.

Signal Decomposition: The relatively regular component is extracted from the
plethysmograph signal as detailed in the following sections and shown in the RESULTS
section in Figures 2(a) and 2(c) and Table 1 that depict a significant part of the
extracted regular component of the plethysmograph signal.

Phase-space features: The phase-space diagrams of the plethysmograph signal
and of its estimated regular component are presented in Figures 2(b) and 2(d)
respectively.

PERIODICITY DETECTION AND DECOMPOSITION OF THE PLETHYSMOGRAPH
SIGNAL

The typical plethysmograph signal contains one strong component with nearly
repetitive pattern with a weak irregular residual component. In the present work, the
signal is decomposed into these two components, which are separately analyzed. This
decomposition involves: (i) the detection of the periodicity of the nearly repetitive
component, and (ii) the extraction of the same from the composite signal. The general
procedure for detection and extraction of nearly periodic segments feature are reviewed
in references [7-9], and is summarized here; a modified scheme for estimation of the
time varying periodicity is proposed in a later section.




Periodicity detection

Let the time series: {x(.)} = {x(1), x(2),...} be configured into an mxN matrix An:

x(1) x(2) x(N)
x(N+1) x(N+2) x(2N)
AN =
" x((m-1)N+1)  x((m-1)N+2) ... x(mN)

(1)
Singular value decomposition (SVD) [5,7] of any mxN matrix Ay is given by Ay = usv’,
where UeR™™ and VeR™ are orthogonal matrices, S (eR™") = diag (s1, Sz,..., $::0), r
= min(m,N), s1> s> ...> s,. The number of nonzero singular values (s;) gives the rank of
An.

If {x(k)} is strictly periodic (in repeating pattern and period length sense) with
periodicity N (e.g., x(k) = x(k+N)), Rank(An) = 1. Again, if {x(k)} is arranged into another
matrix Ay with row-length iN, i = any positive integer, Rank(Ain) = 1. If {x(k)} is nearly
periodic with periodicity N, Ay can be a full-rank matrix but the first singular value will be
dominant (i.e. sy >> s;). Thus, the presence of a dominant periodic component in any
data sequence {x(k)} will result in repetitive peaks (at multiples of the concerned period
length N) in the si/sz vs. row length (n) spectrum, which is called the ‘singular value
ratio’' (SVR)-spectrum [1,2] or the 'periodicity spectrum' [3] of {x(k)}; instead of s4/s,, any
other rank-revealing index may also be used.

Periodic decomposition

The rank-1 approximation of the matrix AN, which also represents a periodic time
series of periodicity N in {x( 1)} is given by uss1v4', where uy and vy are the first columns
of U and V respectively. v4' represents the pattern over the periodic segments of the
extracted component of periodicity N, while the successive elements of uss are the
scaling factors for the successive periodic segments. The residual component is given
by the time serles represented by the matrix Ay - UsStVy .

Analysis: uisyv4', the most dominant SV-decomposed component stands for the best
estimate (in least squares sense) of the periodic component of /ength N present in
{x(k)}; it is implicit that the best estimate of the periodic pattern is v4'. The pattern
estimation is completely adaptive, unlike alternative approaches; for example only
sinusoidal components are permitted in Fourier decomposition based methods, and in
wavelet transform [24] there is constraint as regards shapes or patterns of components.

Since, in real-life, the periodicity of {x(k)} may vary with time, a moving data-
window scheme [9] may be used for decomposition. If /; be the periodicity in the i-th data
window, the length of the (i+1)-th data window is ml;,, where m>4 (as at least two peaks
are necessary for periodicity detection in the p-spectrum). Two data windows (say i-th
and (i+1)-th) thus overlap over (m-1); data points. In i-th data window the prime
periodicity /; is detected using p-spectrum and the concerned periodic component is
detected from which only the first period (of length [;) is extracted; the procedure is
repeated for the next data window. The so obtained successive periodic segments
adjoined together constitute the estimated relatively ‘regular’ component {x(K)reguiar)},




where the periodicity, as well as the pattern and the scaling factor may vary between
the different segments.

Decomposition of the photo-plethysmograph signal (PPS)

Since the detection of the periodicity attributes is pivotal to the present study, the
decomposition scheme stated above is further refined as follows. First, a fixed data
window length (>4 times the maximum expected period length) is considered. The
periodicity within the data segment (say /) is detected using the p-spectrum and the
corresponding periodic pattern is obtained. This pattern is linearly transformed by
stretching or compressing to different period lengths (varying from /4/2 to 3/1/2 for even
l1, and (/1-1)/2 to (3/4+1)/2 for odd /1) and the correlation of each with the data segment
of equal length from the beginning of the data window (both being normalized) is
computed; the period length /1 for which the correlation is maximum is considered to be
the period length of the first periodic segment within the data window. The data window
is moved by the length /;” to form the next data window, on which the whole exercise is
repeated.

Thus the first extracted periodic segment will have the normalized pattern py, the
period length /1, and its scaling factor as (say) as. The corresponding error or residual
vector eq (= (x(1), x(2), ..., x(h ) - p1(li)ay) is the first segment of the error component of
{x(k)}. The successive p1(l1 )ai vectors and the corresponding e; vectors respectively
adjoined together make up the regular and the error (or the residual) parts of the signal
respectively. The dynamics associated with the regular part in the plethysmograph
signal through the individual p-attribute sequences: {pj}, {I’} and {a} are then analyzed.

RESULTS

The nature of the periodicity and scaling sequence for a typical case (Case-2,
Table 1) is depicted in Figures 1(a-b); the profile of the varying pattern (with each
pattern normalized to a fixed period) for the same is shown in Figure 1(c). The
plethysmograph signal and the phase-space plot for Case 1 is shown in Figures 2(a-b).

ASSESSMENT OF NONLINEARITY USING SURROGATE DATA

One of the key issues in the study of nearly periodic or apparently irregular
physiological signals is to determine whether the underlying process is governed by low
dimensional chaotic dynamics or by some non-deterministic rules. Some of the main
constraints for such a study are the requirements of large number of data points and
stationarity, as well as problems due to observational and dynamical noise etc., which
can be potential sources of errors particularly in case of physiological signals [11,16,19].
So in the present context, a more modest goal is to demonstrate the nonlinearity
associated with the signal rather than aiming to prove presence of chaos, as




nonlinearity is a necessary condition for the presence of low dimensional chaos. This
has given rise to the popular surrogate analysis [17,20] (discussed in the next section),
which has been used and modified in the present study.

The detection of nonlinearity being the objective, a null hypothesis of the data
being generated by certain static transformation of a linear stochastic process is
considered (because the simplest type of nonlinearity in the data will at least be akin to
static nonlinear transformation generating nongaussian output for a stochastic input
series with Gaussian distribution). Corresponding to the data series, the surrogate data
are generated, which are sets of random data having the same power spectrum and the
same temporal amplitude distribution as the original series. To test the null hypothesis,
the original series and the surrogate series are subjected to a procedure sensitive to
nonlinearity, and a discriminating statistic is considered; the rejection of the null
hypothesis amounts to the detection of nonlinearity.

In the lterative Amplitude Adjusted Fourier Transform (AAFT) surrogate
generator [17], close match with the original data both with respect to the power
spectrum {X?} as well as the amplitude rank distribution (ox) is achieved by which
{x(k)} is shuffled randomly {x{”}, subsequently followed by a two stage iterative
procedure:

(i) The power spectrum of {x,} is replaced by {X,*}, and

(i) the reverse transformed series is rank ordered to (o). The proposed
surrogate generators incorporate the AAFT approach.

The Fourier transformation based surrogate generation schemes discussed
above are nonparametric and are concerned with a linear null hypothesis. Although this
type of surrogate analysis is routinely employed for the analysis of nonlinear time series,
there can be problems in case of periodic processes (or for systems with long
coherence time) [19, 21]. Strong nearly periodic rhythms are explicit in the present
plethysmograph signal (Figures. 2(a), 2(c)). Ideally, the surrogate of such a nearly
periodic time series should be another periodic time series [23]. In other words, if the
original time series exhibits a limit-cycle behaviour in phase-space, surrogate data
should also correspond to similar limit cycle. On the other hand, a time series producing
noisy limit cycles (Figures 2(b) and 2(d)) is not generated by a linear stochastic process,
even if observed through a static monotonic nonlinear transformation. A partial solution
to this problem was addressed in [22], where the hypothesis of temporal correlation
between successive nearly periodic segments was tested; the surrogate was generated
by shuffling the sequence of complete cycles, disregarding the individual characteristic
periodicity attributes of the cyclical segments, thus retaining the mutual coupling
between the three periodicity attributes.

In the present context, the regular component of the signal exhibits variations in
all three periodicity attributes (shown in Figure 1). Since the interest in this report lies in
understanding the influence of the individual p-attributes on the overall dynamics, a new
class of surrogate generators is proposed next, which preserves the limit cycle structure
of the original time series.




Proposed surrogates

Three different surrogates are generated by the randomization of the three
periodicity attributes as follows.

Preparatory steps:
(i) Decomposition:

The original signal is decomposed as {x(k)} = {X(K)reguiar)} + {X(K)resiqua)} With

{X(K)requar)} = {P1(l1 )ar: pa(l2)az: ... : pa(f)an}, (2)

where n is the number of contiguous periodic segments extracted from the signal; each
periodic segment is characterized by its own periodicity or period length f, periodic
pattern p; and scaling factor a;. The global pattern (pg) is obtained by averaging the p;
vectors defaulted to the same period length. ({X%}) is the power spectra of {X(K)regular)}-
Analysis: Here the pattern p; is considered to define a normalized profile; the
normalization is with respect to period-length. The periodicity, the pattern and the
scaling factor are algebraically independent entities.

(i) Rank-ordering: Within the individual surrogate generators, the periodicity sequence
{i} and the scaling factor sequence {a;} are ordered according to the amplitude ranking,
while the seqruence of normalized pattern segments {p;} is sorted according to the
correlation (p;’ pg) of the segments against the global pattern. The order of ranking with
respect to the individual attributes in the respective sequences (say, 0, 0, 04
respectively) is noted.

Generation of the surrogates:

(A) Surrogate generation through randomization of the period-length or
‘periodicity’ attribute: The periodicity sequence {f} (i.e. {h, 1 ..., I}) is randomly shuffled
to {i"} keeping the associated scaling and pattern features unchanged; the patterns p;
are linearly stretched or compressed as necessary. The resulting time series {p¢(/1")as:
p2(12 )az :...: pn(lh7)an} is Fourier transformed, the power spectrum is replaced with
({X«*}), and reverse Fourier transform is performed; the successive cyclical or periodic
segments of the resulting time series are rearranged to conform to o,. As this reordering
tends to disturb the power spectrum, the procedure is iterated twice, which produces
closer match with ({Xi%}, o)), resulting in the periodicity shuffled surrogate. The null
hypothesis to be tested with this surrogate is that all the information lies in the pattern
and scaling, while the periodicity factor does not contribute to the dynamics of the
series.

(B) Surrogate generation through randomization of the ‘pattern’ attribute: {p} is
scrambled to {p;’}, while the other two attributes are left unchanged, generating the
series {p1 (h)a1: p2 (k)az:...: pn (I)an}, which is Fourier transformed. The same way as
above, the power spectrum is replaced with ({Xs?}), and reverse transform is performed.
The successive nearly periodic segments are reordered as per o, sequence, and the
whole procedure is repeated twice, leading to the pattern shuffled surrogate. Here the
null hypothesis to be tested that all the information lies in the periodicity and the scaling,
while the pattern variation does not contribute to the overall structure of the series.




(C) Surrogate generation through randomization of the ‘scaling’ attribute: The
sequence {aj} is randomized to {a’}, generating the time series {p1(/l1)a:": pa(k)az :...:
pa(lh)an}. Its power spectrum is replaced with ({X,}), and the scaling factors of the
successive periodic segments of the reverse transformed series are reordered as per o,
sequence, and the whole procedure is repeated twice, leading to the scaling factor
shuffled surrogate. Here, the null hypothesis is that the scaling sequence does not
govern the dynamics and the entire information lie in the pattern and periodicity
variations.

Analysis: (i) Conventional surrogates have an inherent tendency towards statistical
Type | error (i.e. the false rejection of null hypothesis) for the analysis of signals with
long coherence time (or oscillatory series) due to the distortion of the phase space
structure; these new surrogates are proposed to alleviate this problem by preserving the
phase space geometry qualitatively.

(if) For the analysis of the residual component {(x(k)-x(K)reguiar)}, Which is devoid
of oscillatory structure, the conventional AAFT surrogate generator [20] is employed.

Detection of determinism

Detection of determinism by conventional means can be problematic in case of
lack of stationarity, noise contaminations, availability of limited amounts of data etc. as
discussed earlier. In the present work, a method based on nonlinearly scaled singular
value distributions has been used [2,3]; a broad outline of the method follows.

The data series {x(k)} and its surrogate {xsurr(k)} are configured into different mxn
matrices A and Agr With varying n. The scaled distributions of the respective singular
values are generated and are analyzed for characterization of the process as follows.
The total energy in A (={{a;}}), given by Lz a,-j‘2 = ¥;s7 (i = 1 to rank(A)), is normalized
for each configuration A, preserving the Frobenius norm. Since rank(A) will be different
for different n, a value R close (not a limitation) to the minimum rank(A) is chosen. For
each n, the total energy A is linearly mapped to R normalized singular values. Thus for
M different values of row length n, M sets of R singular values are obtained from which
the mean singular values sn(i), (i = 1 to R) are computed. The scaled distribution 2s(i)
is plotted against j for i = 1 to R, for both {x(k)} and {xsur(k)}. The sets of distributions of
the singular values with varying n are nonlinearly related; this is over and above the
nonlinear weighting of the distributions within each set.

The discriminating features between the deterministic and stochastic processes
reflected in the distribution of the nonprime singular values. For a purely stochastic
series, all the singular values being isotropically distributed, Psn(i) will be gradually
increasing tending to saturate at a high value, since the singular values are arranged in
a non-increasing order. On the other hand, for a series, with increasing J, the singular
values s; will be having significantly decreasing magnitudes tending to be vanishingly
small, and hence Ps,,(i) will be eventually decreasing tending to saturate at a low value.
The distributions of Ps(i) against i (bet. 1 to R) for {x(k)} and {xsu:(k)} are compared
using Mann-Whitney (M-W) rank-sum statistic (Z) [25]. This is normally distributed with
zero mean and unit variance, under the null hypothesis that the two observed samples
came from the same distributions. If [Z]>1.96, the associated null hypothesis can be
rejected with greater than 95% confidence level [25].




Each kind of the surrogates is used to assess the determinism in the regular
component in the above way by computing the M-W rank-sum statistic (|Z| for
periodicity shuffled surrogate, |Z,| for pattern shuffled surrogate and |Z,| for scaling
factor shuffled surrogate). For the detection of determinism in the residual component,
the corresponding Z-value (|Z,s|) is computed using AAFT surrogate the same way.

Proposed p-attribute map and complexity measures

p-attribute space and map: The three attributes, the periodicity, the periodic
pattern and the scaling factor, are independent entities, and collectively the three can
precisely define a periodic segment. Hence a novel 3-dimensional space is constructed,
where the periodicity and the scaling factor, both normalized, act as two coordinates,
while the pattern correlation acts as the third coordinate; the pattern correlation is given
by the correlation of the wave-shape or pattern of a segment with respect to the global
pattern. The p-attribute sequences extracted from a nearly periodic series can be
mapped into the proposed space, which we call p-attribute space or simply p-space. A
point in this space represents one periodic segment of the regular component of the
nearly periodic signal. The sequence of periodic segments mapped into the p-space,
called the p-attribute map, portrays the complete dynamics of the regular component.
The trajectory joining these points sequentially depicts the temporal evolution of the
process in the p-space.
Analysis: (i) Any strictly periodic process (whether sinusoidal or not) is represented by a
single point in the p-space, which shows the minimal dynamical variations. (ii) The p-
space mapping assumes a global pattern to be available.

Characterization of the dynamics through the distribution in p-attribute space

Reference point: A reference point is first considered within the p-space, which
represents a state of minimum dynamics for a cyclical process, i.e. a process which is
strictly periodic. The implication is that the reference point lies on the plane with pattern
correlation as unity. The mostly occurring periodicity, called the ‘modal periodicity’, is
chosen as the periodicity coordinate of the reference point. The scaling factor usually
being a random phenomenon, the average value of the scaling factors for the process
studied is considered as the concerned scaling co-ordinate for the reference point. The
following two complexity measures quantify spatial and temporal evolution of the
cyclical process.
Spatial Complexity Measure Cs. In the three-dimensional p-space, the distance
between the nearest point and the furthest point of the map from the reference point is
considered as the range of the map, which is divided into n* spherical sections of equal
width (e.g. if the smallest sphere is of outer radius r, the outmost spherical shell has the
outer radius of n*r). The fraction of the total number of points in each section of the
map, i.e. the fraction of points in each spherical shell centred on the reference point, is
computed. Higher fraction of points being close to the reference point (i.e. the clustering
around reference point) indicates the tendency of less variation of the p-attributes.

The spatial p-map dynamics is indicated by the measure:

Cs = Zif(i),




where £i), i=1,2,..., n* is the distribution of points, and i is the section index; in the
present case n* is considered as 10 (which is not a limitation). Thus Cs is a spatial
distribution index, which measures the degree of deviation of the global dynamics from
a strictly periodic process. The higher the value of Cs, the higher is the variation
measured globally. However, Cs is independent of the temporal ordering of the
successive cyclical segments, for which a separate index (C,) is proposed.

As the pattern correlation is confined to values <1, whereas the other two
coordinates-values lie on either side of the reference-point, it is a semi-spherical space
within which the mapped points lie. The volume of the j-th shell being (3j2 =3j +1)/2
times the first one, the present mapping over-weights the j-th shell j(3/ —3j +1)/2 times,
as higher dynamics is associated with the points lying in outer shells.

Temporal Complexity Measure C4. The dynamic measure (C,) is defined as the mean
distance moved between successive points in the p-space. A higher value of Cy4
indicates higher dynamics. Unlike Cs, which is a static measure, Cy is a complementary
measure of temporal evolution of the process into the cloud of points in the p-space. In
the present context, C, indicates the beat-to-beat variability of the plethysmograph
signal.

Analysis: (i) By hypothesis, clustering around a point in the p-space away from the
reference point and more dominant than the cluster around the reference is not
possible, as that would mean mostly one repetitive profile being dominant, which would
in fact be the reference point profile. (ii) As the points move away from the reference
point in the p-space, their pattern correlations decrease from 1 to a lower value, while
the periodicity and the scaling co-ordinates lie on both sides of the reference point
values.
Case Study Analyses

Raw data derived from previous legacy studies [10] from six different cases
showing wide medical histories are analyzed to validate the above mathematical
routines. The results are summarized in Table 1 and Figures 2, 3 and 4.
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Table 1. Summary of case studies from archival database [10].

Energy in | Determinism assessment| p-map
Cases | Medical History of | residual indices complexity
subject component indices

IZII IZPI |Zal lzresl Cs Co

1 Postoperative 1.8% 290 | 520|157 |1.77 |4.00 |0.30
(thoractomy)
clinically stable
subject in ICU. Age:
64.

2 Quasi-stable case 2.7% 0.65 1296 | 1.39 |2.18 1.38 |0.14
following hernia and
cardio-thoracic
surgery, in ICU,
hypotensive. Age:
69.

3 Subject with hypoxic | 8.1% 0.31 10.35 | 1.73 |2.26 1.76 | 0.21
brain damage
following road
accident, unstable,
in ICU, with right
hemiphlegia. Age:
27.

Oral chemotherapy,
4 operated for breast | 1.5% 3.41 1339 194 183 322 |042
cancer, BP normal.

No cardiac problem.

Age: 57.

5 Angina , high BP for | 3.2% 222 1288|126 |0.01 2.32 0.20
17 years. Age: 65.

6 Suffered a stroke 5 | 2.7% 244 1272 | 1.76 | 1.30 2.30 0.24

years back. one
defective heart
valve, hypotensive.
Age: 68.

Cy tracks the beat-to-beat variability of the plethysmograph signal.
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Figure 1. (a) The variations in the periodicity over a segment of
data in Case-2, (b) the corresponding variations of the scaling
factor, (c) the varying pattern profiles of the successive periodic
segments with the periodic length defaulted to a fixed value.
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Figure 2. (A)-(b) The photo-plethysmograph signal for a post-operative stable patient
(case-1 in table 1), and its phase-space plot. (c)-(d) the regular component extracted
from the signal (a), and the corresponding phase-space plot. (e)-(f) the aaft surrogate
series generated from (c), and the corresponding phase-space plot. (g)-(h) the
surrogate generated by shuffling the scaling factors and the corresponding phase-space
plot. (i)-(j) the surrogate generated by shuffling the

(@ - - - (b) 2000

i
o
S

o O

x(k+7

=y

o

o &

- - ~1000
0 1000 2000 3000 4000 4. ~1000 0 1000
(?ooo | ' ' ) 2000

I
>
o
o O‘
x(k+7)
)
<
o O

- ~ : ' ~1000
0 1000 2000 3000 4000 ~1000 0 1000
() : : : : ® 2000

A i hi A1 i
i : ARRI S plian 8
HHRILYLRI il

]
o g
(o
<@

[« ]

x(k+7

ke

(]

<

o O

. - ’ : ~1000
(@) 0 1000 2000 3000 4000 (h) -1000 0 100@000

2000 __ 2000
0 ® 0
-1000 . - - -1000

0 1000 2000 3000 4000 0) -1000 0 1008000
2000 ' ' 1 2000

ARAARGRGRRN RAGAARANGARR EARN R EEL RRARARERAAAR ~

1000 itrA AR AR ERR) HHTHI } & 1000
~1000 . - ' -1000

0 1000 2000 3000 4000 -1000 0 1002000

Time Samples x(k)

patterns of the periodic segments and the corresponding phase-space plot. Note that in
both (h) and (j) the noisy limit cycle structure is retained, whereas in (f) it is destroyed.

13




©

(b)

(@)

&

saouestp dew-d

B
&
&

1%

m

i3

2t

L]

Consecutive patterns

7 - 3sen)

2
-
Mv ]
9
< g
ST
T
x 3«3 B o wo
s d s 8
3
§
5]
B3
4
< / -
R
RSN
=+
24888 RES
2
%
.
w0
-4
L4
hﬂv

g

1% 0 ¥

10

3 bov) 2%

0

€ -aseD)

p - osE)

G - ase))

9 - ase)

14



Figure 3. Column (a): The scaled singular value distribution ((Psm(i)) of the regular
component against the same for the surrogates generated through the shuffling of the
periodicity, the pattern and the scaling sequences for Case-1 to Case-6.

Column (b): The scaled singular value distribution of the residual component against the
AAFT surrogates for Case-1 to Case-6.

Column (C): Profiles of the distances between successive points in the p-map for Case-
1 to Case-6.

Figure 4. Fraction of points in successive shells centred around the reference point in

the p-map for Case-1 to Case-6.
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The above figures indicate that the extracted component derived by the specific
mathematical routines has essentially captured the dynamics of the raw data
macroscopically. Additionally, the time series of AAFT surrogate of the estimated data,
and the phase-space plot are shown in Figures 2(e)-(f). From the visual inspection it
appears that the surrogate series possesses different dynamics compared to the
original signal. The phase-space plot shows that the noisy limit cycle structure is
completely destroyed. The time series and their phase-space plot of the proposed
nonlinear surrogates with randomized scaling and periodicity and pattern sequences are
displayed in Figures 2(g)-(l), retaining the noisy limit cycle structure.

Assessment of determinism: From the present analysis, the following observations
emerge:

(a) Pattern variations: For healthy subjects with normal cardiac states (Case-1,
Case-4) there is distinct determinism in the plethysmograph signal due to pattern
variations; the |Z,| values are found to decrease from a high value (e.g., 5.2 in Case-1
and 3.39 in Case-4) to lower values with increasing instability (e.g., in Cases 2, 5 and 6)
implying low determinism. In Case-3 which is an unstable case, stochasticity in the
signal due to pattern variation is reflected in the |Z,| value (<1.96).

(b) Periodicity variations: Nearly similar behavior for periodicity variation is
observed from the |Z| values. This implies that the periodicity variation affects the
determinism in the signal in the same way as the pattern variation.

(c) Scaling variations: The influence of the scaling variations are consistently of
the stochastic nature as |Z,|<1.96 in all cases. This implies lack of information regarding
cardiovascular stability in the variation of the scaling factors.

(d) Study of the residual series: Within Cases 1-4, with increasing instability |Zres|
tends to increase from stochastic region to deterministic domain with low degree of
determinism. For Cases 5 and 6 the scaled singular value profiles of the residual and
the surrogate (Figures 2 (b)) tend to cross over significant regions leading to low |Zres|
values though the concerned cardiovascular states are disturbed. So no conclusive
results emerge from the study of the residual.

p-map dynamics: The p-map dynamics, which provide a collective picture of the p-
attribute variations, alternatively uniquely reflect the relative state of cardiovascular
stability.

(a)The Cs measures obtained from the distribution of points around the reference
point in the p-map (Figure 4) are high (implying higher dynamics) for stable cases (e.g.,
4.0 and 3.22 in Case 1 and 4 respectively) and fall to lower values with increasing
instability.

(b)The Cy measures, which indicate the mean of successive distances covered
(Figure 2(c)) in the p-map also show similar distinctive behavior as Cs, being relatively
high (0.3 and 0.42 for cases 1 and 4 respectively) for stable cases and low for
pathological cases.
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Analysis 1: Due to the variations in the BP pulse propagation delay (also known as
Pulse Transit Time (PTT)), which is a function of the elastic properties of the arterial wall
between the left ventricle and the periphery (i.e. the finger), the variability of the cardiac
periodicity detected through the plethysmograph signal will be different from the
conventional HRV sequence generally computed from R-R intervals of ECG complexes.
This together with the fact that change in the length of the cardiac cycle can influence
the diastolic decay and thereby change the wave-pattern, the proposed assessment of
cardiovascular state through the periodicity attributes of the plethysmographic signal
can be more informative than the HRV studies. The present findings of decreased
complexity in case of cardiac pathologies conform to those from HRYV studies [5-8].

CONCLUSIONS

A generic mathematical algorithm process for analyzing complex physiologic
signals in terms of the time-varying periodicity attributes, typically derived from
techniques such as digital plethysmography, has been presented. First, the complex
waveform determinism is detected through scaled singular value distributions of the
signal against three specific classes of surrogates generated from the three periodicity
attributes. These surrogates, generated by randomizing the mutual associations
between the different p-attributes, are shown to preserve stable noisy limit-cycle
structure in the phase-space.

The results of a validation of blood wave patterns obtained from an archival
database show that the signal dynamics associated with the periodicity attributes
contain meaningful relationship with the condition of the underlying process. While the
effect of the scaling factor is largely stochastic in nature, the degree of determinism in
the signal due to the pattern and the periodicity variations is observed to be highly
correlated with relative chaotic function of the cardiovascular state of a given human
subject; with the degree of determinism tending to decrease with increasing instability.

The effects of the variations in the p-attributes have also been collectively
analyzed through the proposed mapping in three-dimensional p-space; one unique
feature of this mapping is that one periodic segment is described by one point in p-
space. The present report verifies that the cardiovascular status is consistently reflected
in the distribution of points in the p-map around the reference point. As reflected in both
the static and the dynamical measures of complexity, the distribution of points in the p-
space is more spread out in stable, healthy subject cases representing higher variations
in the underlying dynamics, while it tends to be heavily clustered close to the reference
point in pathological or unstable human subject cases indicating the loss of complexity
(decreased chaos) as implied from other studies [15].

Application of this mathematical algorithm technique can be reasonably, and
easily, employed to derive and separate complex wave patterns affecting cardiovascular
status during various perturbations of the physiological system.
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